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SUMMARY

This paper describes the parallel fast multipole method implemented in EADS integral equations code.
We will focus on the electromagnetics applications such as CEM and RCS computation. We solve
Maxwell equations in the frequency domain by a �nite boundary-element method. The complex dense
system of equations obtained cannot be solved using classical methods when the number of unknowns
exceeds approximately 105. The use of iterative solvers (such as GMRES) and fast methods (such as
the fast multipole method (FMM)) to speed up the matrix–vector product allows us to break this limit.
We present the parallel out-of-core implementation of this method developed at CERMICS/INRIA and
integrated in EADS industrial software. We were able to solve unprecedented industrial applications
containing up to 25 million unknowns. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We want to simulate the electromagnetic wave propagation phenomena in order to address
various industrial problems (telecommunication antenna radiation patterns, electromagnetic
compatibility, stealth design, etc.). We solve Maxwell equations in the frequency domain using
an integral formulation and a �nite-boundary-element method. For instance, if we consider a
perfectly conducting object � illuminated by a monochromatic incoming plane wave Einc, the
magnetic current j̃(x) de�ned on �= @� satis�es ∀̃jt

∫
�×�

G(|y − x|)
(
j̃(x) · j̃t(y)− 1

k2
div� j̃(x) div� j̃t(y)

)
dx dy=

i
kZ0

∫
�
Ẽinc(x)j̃t(x) dx (1)
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Table I. Time and memory requirements growth for the three types of solvers.

Direct solver Iterative solver Multipole solver

Assembly time ndof 3 ndof 2 ndof
Resolution time Nrhsndof 2 NrhsNiterndof 2 NrhsNiterndof log ndof
Storage ndof 2 ndof 2 ndof log ndof

where j̃ t is a test current, k=!=c is the wave number, and G(|y − x|) is Green’s function
solution of �G + k2G= �0

G(|y − x|)= eik|y−x|

4�|y − x| (2)

Equation (1) is usually referred to as electric �eld integral equation or EFIE. To discretize
it, we use a boundary triangle mesh with Rao–Wilton–Glisson �nite elements [1], where
unknowns are carried by edges. In the case of perfectly conducting closed bodies, a magnetic
�eld integral equation (MFIE) is also available. The linear combination of EFIE and MFIE is
usually called combined �eld integral equation (CFIE), and is known to be the most e�cient
formulation in connection with iterative solvers. In the more general case of heterogeneous
dielectric objects, the integral formulation is slightly more complicated, but the fast multipole
method still applies in the same way.
This integral approach of Maxwell equations has several advantages over a classical volumic

formulation. First, only the surface of the considered object � carries unknowns and there is no
need to mesh the empty space around and inside it. Second, the radiation condition at in�nity
is directly included in the formulation. This method leads to the resolution of a full dense
complex linear system, which can be solved either by a direct method (LU factorization for
example) or an iterative method (GMRES, QMR, CG, etc.). When the number of unknowns
n becomes large (more than ≈ 104), these two methods (direct and iterative) become very
expensive in CPU time and storage requirements as shown in Table I (where ndof is the
number of degrees of freedom, Nrhs is the number of right-hand sides and Niter is the number
of matrix–vector products required by the iterative solver for each right-hand side).
Unfortunately, in the electromagnetic computations we plan to do in the future, the number

of unknowns will rather be counted in millions than in thousands. For instance, any compu-
tation on a full aircraft at 1 GHz will immediately ask for more than 1 million unknowns,
which can hardly be solved even on the largest supercomputers available.
The fast multipole method, combined with any iterative solver, is an e�cient way to over-

come these limitations [2, 3]. The fast multipole method (FMM) is a new way to compute fast
(but approximate) matrix–vector products with time and memory requirements in ndof log ndof .
In Table I, we call ‘Multipole solver’ an iterative solver using the fast multipole product
instead of the usual one.
In order to see the actual bene�ts of this method, let us give a small example: we want

to compute the radar cross-section of a wing-shape object called ‘Cetaf’ meshed with (only!)
5391 unknowns. Table II gives the total CPU time (in s) and disk space (in Mb) required by
the three solvers. The RCS obtained with each solver is drawn in Figure 1: there is absolutely
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Table II. Small example.

Direct solver Iterative solver Multipole solver

CPU time 4871 s 1206 s 152 s
Storage 467 Mb 474 Mb 28 Mb
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Figure 1. Cetaf mesh and radar cross-section.

no di�erence. We see that even on small problems, the FMM is able to give very accurate
results at very low costs in time and storage.

2. THE FAST MULTIPOLE METHOD

As we said, the goal of the FMM [4] is to compute fast (but approximate) matrix–vector
products. It is fast in the sense that CPU time is O(n ln(n)) instead of O(n2), and approximate
in the sense that there is a relative error between the ‘old’ and the ‘new’ matrix–vector
products �≈ 10−3. Nevertheless, this error is usually below the error induced by the iterative
solver or by the surfacic triangle approximation.

2.1. The one-level FMM

We will now give an overview of the FMM in its one-level version. For a matrix–vector
product, the input data is a given surfacic current j̃(x) de�ned on �. We want to compute the
left-hand side of the EFIE (1) for all test functions j̃ t . First, we divide � into equally sized
patches. A simple way to do that is to compute the intersection of � with a cubic grid (cf.
Figure 2). The degrees of freedom are then dispatched between these cubic cells. Interaction
of basis functions located in neighbour cells (that is to say cells that share at least one vertex)
are treated as before.
The interactions of unknowns located in non-neighbour cells are accelerated with the FMM.

The base of this algorithm if the following addition theorem: given two points x and y located
in two distant (= non-neighbour) cells C and C′ centred in M and M ′, we have

G(|y − x|)= ik
16�2

lim
L→+∞

∫
s̃∈S

eiks̃·x̃MT L˜MM ′ (̃s)e
iks̃·M̃ ′y d s̃ (3)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:865–879



868 G. SYLVAND

Ω

Γ

C’
M’

C
M

Figure 2. Division of � into patches (2D version).

where S denotes the unit sphere in R3, and TL˜MM ′ is the transfer function de�ned on S by

TL˜MM ′ (̃s)=
∑

06l6L
(2l+ 1)ilh(1)l (k · |M̃M ′|)Pl(cos(̃s; M̃M ′)) (4)

The parameter L is called number of poles. It is chosen in accordance with the size of the
cell edge a, in order to have a good accuracy in (3) and no divergence in (4): L=

√
3ka sat-

is�es these conditions. According to the EFIE (1), the action of the current j̃(x) for x∈�∩C
on the basis function j̃ t located in C′ is given by

∫
x∈�∩C

∫
y∈�∩C′

G(|y − x|)
(
j̃(x) · j̃t(y)− 1

k2
div� j̃(x) div� j̃t(y)

)
dx dy (5)

Inserting the addition theorem (3) in this formula, we notice the appearance of the three
steps of the one-level FMM.
Initialization: We compute the function FC de�ned on the unit sphere S

FC (̃s)=
∫
x∈�∩C

eiks̃·x̃M j̃(x) dx (6)

FC depends only on the current j̃, on the cell C and its centre M . It represents the action of
the current j̃(x) for x∈�∩C on any distant cell C′.
Transfer: We multiply FC by the transfer function TL˜MM ′ . The result is still a function de�ned

on the unit sphere, and it represents the action of the current j̃(x) for x∈�∩C speci�cally
on C′.
Integration: We �nish this calculus by integrating both on S and on �∩C′

ik
16�2

∫
y∈�∩C′

∫
s̃∈S

[TL˜MM ′ (̃s)FC (̃s)] · eiks̃·M̃ ′ỹj t(y) d s̃ dy (7)

There are several ways to handle the ‘div div’ term in (5), the simplest one is to consider
that the vectors such as j̃ and j̃ t have four components: (jx; jy; jz; div�( j̃)=k). Therefore, FC

also has four components. These number of components can be reduced to two [5].
We can say a few words about the integral equations for acoustic di�raction problems. In

the case of a rigid body hit by an incoming plane wave uinc, we denote by u the air pressure,
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Figure 3. Octree.

and the unknown �(x)= u−|�(x)− u+|�(x) is given by the following equation:
∮
�×�

@2G
@�x@�y

�(x)�t(y) dy dx=
∫
�

@uinc(x)
@�

�t(x) dx (8)

From (3), we deduce the following decomposition for the derivative of G:

@2G
@�x@�y

=
ik
16�2

lim
L→+∞

∫
s̃∈S

ks̃ · �̃yeiks̃·ỹMTL˜MM ′ (̃s)ks̃ · �̃xeiks̃·M̃ ′x d s̃ (9)

Hence, we can write a multipole algorithm with the following formula.
Initialization: FC is given by

FC (̃s)=
∫
y∈S∩C

ks̃ · �̃yeiks̃·ỹM�(y) dy (10)

Integration: We integrate the following term:

ik
16�2

∫
x∈S∩C′

∫
s̃∈S

GC (̃s)ks̃ · �̃xeiks̃·M̃ ′x!i(x) d s̃ dx (11)

In this case, the radiation functions have only one component.

2.2. The multi-level FMM

The multi-level FMM is an extension of the previous work. It is based on a recursive subdi-
vision of � using an octree (cf. Figure 3). The e�ective result of this subdivision on a real
object is shown in Figure 4.
In this case, the interaction between two degrees of freedom will be treated in this tree

‘as high as possible’, that is to say at the higher level where they still are in non-neighbour
cells. If there exists no such level, the interaction is treated classically outside of the FMM.
The multipole algorithm can now be written in four steps.
Step 1 (Initialization): For each leaf C, we calculate FC (̃s) which represents the in�uence

of C on the outside of C in direction s̃∈S2.
Step 2 (Ascent): We recursively calculate FC at levels n−1; n−2; : : : ; 3; 2 (using FC of the

lower level).
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Figure 4. Subdivision of an Airbus A318 through an octree.
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Figure 5. Multilevel multipole algorithm.

Step 3 (Transfer and descent): We recursively calculate GC (which represents the in�uence
of the outside of C on C) at level 2, 3; : : : ; n− 2; n− 1 (using GC of the upper level, and FC
of the same level).
Step 4 (Integration): For each unknown j̃ t located in C, using GC we calculate the corre-

sponding co-ordinate of the matrix–vector product.
This part of the algorithm is very technical, and has been extensively explained in Refer-

ences [4, 6]. Figure 5 gives a symbolic representation of how it works.
As we can see, levels 0 and 1 are not used; indeed, at these levels all cells are neighbour,

and therefore all the interactions must be treated at lower levels. But it is not mandatory to
ascend up to level 2. In fact, we can freely choose the highest level of our exploration of
the octree. At this level, all the interactions not yet taken into account must be dealt with.
Another important point is the fact that the number of poles L will increase with the size of
the cells as we go up in the octree. One can show [4, 7], that the optimal complexity of this
multilevel FMM is O(n log(n)) where n is the number of unknowns.

3. SEQUENTIAL PERFORMANCE OF THE FMM

3.1. Presentation of our implementation

The code that we have developed is written mainly in C, with a bit of fortran 77 (exclusively
for numerical calculations). We have tried to o�er as many parameters to adjust as possible.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:865–879
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Figure 6. Three objects used for our tests: aircraft, sphere, cetaf.

Table III. Sequential performance of the FMM.

Shape Aircraft Sphere Cetaf

Number of unknowns 213 084 1 023 168 1 056 636
Diameter in wavelengths 43� 30� 70�
FMM levels 9 8 10

Residual 5; 6× 10−3 10−4 10−2

Number of iterations 100 37 43

Machines used PC 866 MHz PC 866 MHz DEC 667 MHz
Memory(RAM) 159 Mb 460 Mb 500 Mb
Memory(Disk) 1:2 Gb 5:1 Gb 5:2 Gb
Total time 3:3 h 5:6 h 11:5 h

For instance, the user can choose the size of the leaves, the higher explored level of the octree,
the FMM accuracy level, the number of integration points on �, the in-core or out-of-core
feature, the ‘simple’ or ‘double’ precision in real numbers representation, etc. A long process
of optimization has been led in order to �nd the optimal value for each of these parameters.
We have also optimized the algorithm itself, especially the use of transfer functions (step 3),
which have been sparsi�ed, stored, reused and symmetrized. Through the use of high per-
formance library such as BLAS, LAPACK and FFTW, we have been able to achieve very
complex computation on a wide variety of architectures (PC, SGI, IBM, Sun, DEC, Cray).
All details can be found in Reference [8]. We will now present a few results in order to
demonstrate the interest of the FMM, and the performance of our implementation. Figure 6
presents the three kinds of objects that we have used during our tests: an aircraft, a sphere and
a wing-shaped object called cetaf. These three objects are perfectly conducting and closed.
The iterative solver used in GMRES [9] with 20 for restart parameter. In order to reduce the
number of iterations, the CFIE formulation will be used.

3.2. Sequential FMM computations

In Table III, we have reported the main information concerning three sequential multipole
computations. We can see that even on ‘modest’ workstations (such as PC), the FMM code
is able to handle and solve very large linear systems. Without the FMM, a 1 million unknowns

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:865–879



872 G. SYLVAND

0.1

1

10

100

1000

10000

0 20 40 60 80 100 120 140 160 180

0.1

1

10

100

1000

10000

150 155 160 165 170 175 180

FMM - Polar 0
Mie serie - Polar 0

FMM - Polar 0
Mie serie - Polar 0

Figure 7. RCS of the 1 million unknown sphere (top: full curve, bottom: close-up).

Table IV. The out-of-core feature performance.

Number of groups RAM Max. (Mb) Time by iteration (s)

0(in-core) 1369 579.8
1 1070 590.6
2 649 636.9
3 545 658.6

case would require 18 terabytes of disk space, and several months of CPU time on the same
machine. Figure 7 shows the radar cross-section in VV polarization of the 1 million unknowns
sphere obtained through this computation and the exact solution, obtained with the Mie series.
One can see the very good agreement between the two solutions.

3.3. The out-of-core feature

Since the aim of this method is to handle very large computations, we have included an
out-of-core feature: when the octree is too large to �t in memory, we divide each level of
this tree in groups, and keep at most two of them in RAM. The rest goes to disk. The larger
the number of groups, the smaller the memory need (and the slower the code, due to disk
access).
Table IV gives an illustration of how well it works. We use a cetaf with 2 156 400 unknowns

on one processor of SP3. Thanks to a home-made library, we know the exact maximum
amount of memory used by the multipole code. When the number of groups increases

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:865–879
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Table V. The adjustable accuracy level.

Sphere 255 792 Cetaf 539 100 Aircraft 213 084

Accuracy level Error (%) Time (s) Error (%) Time (s) Error (%) Time (s)

Fast FMM 0.94 42.6 1.6 157.3 2.0 68.7
Intermediate FMM 0.15 83.0 0.50 276.3 1.3 131.8
Accurate FMM 0.05 157.5 0.12 371.9 0.36 189.2

from 0 (which means in-core computation) to 3, the memory used is divided by 2.5 for
a mere 13% time overcost for each matrix–vector product.

3.4. Adjustable accuracy level

By adjusting the FMM parameters such as the number of poles, the number of integration
points, the sparsifying threshold for the transfer matrices, we can adjust the accuracy (and the
speed) of the computation to a certain extent. This is a very interesting feature that can be
used, for example, in �exible preconditioner or in FMM-speci�c solvers. We have therefore
de�ned three accuracy levels:
Accurate FMM: The FMM is as accurate as possible (due to the divergence of the transfer

function (4) when L→∞, the accuracy of the method is limited).
Fast FMM: The FMM is as fast as possible while keeping the error criterion below a few

percent.
Intermediate FMM: This is the default level, located between the other two levels.
Table V gives the relative error and the matrix–vector product time (on a 866MHz PC) for

three objects with number of unknowns between 213 084 and 539 100. Each accuracy level
is approximately two times slower than the previous one, whereas the accuracy increases
noticeably. The di�erences in relative error between the three objects comes mainly from the
size of the larger elements in each mesh.

3.5. Numerical scalability

If we count the number of operations needed to accomplish one matrix–vector product with
the fast multipole algorithm, we have to make an assumption concerning the number of
poles L: usually, in order to simplify the counting, it is taken proportional to the diameter
of the boxes d at a given level, L= kd. With this formula, we �nd that the complexity of
the algorithm is O(n3=2dof ) for ndof�107, and O(ndof log ndof ) before. In practice, the number of
poles is chosen according to the following formula:

L(d)= kd+ C� log10(kd+ �) (12)

where the parameter C� is taken between 2 and 7, depending on the accuracy level. We
have run a set of tests on 32 spheres with C�=7. The diameter increases from 1 to 32
wavelengths by step of 1 wavelength, whereas the number of unknowns ndof grows from 972
to 1.16 million. The time needed for one FMM matrix–vector product (on a 866MHz PC) is
drawn as a function of ndof in Figure 8, on the left. One can see that the growth is O(ndof )
here. On the right is drawn the FMM accuracy. It is constant when the number of unknowns
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Figure 8. FMM product time (left) and accuracy (right).

Table VI. FMM numerical scalability.

Memory
RAM 0:5 kb by unknown
Disk 4:6 kb by unknown

Time
Assembly (s) 3:7× 10−3ndof
Iterations (s) 3:2× 10−4ndof

increases: there is no loss of accuracy when the number of levels in the octree grows, which
means that our formula 12 is well chosen.
In Table VI, we show the time and memory requirements we have obtained during our

tests. Against all expectancy, everything here grows like O(ndof ) instead of the well-known
O(ndof log ndof ). In fact, when we count the number of operations, we use (12) with C�=0.
We underestimate the number of poles at every levels, but the relative error on L(d) that we
introduce is larger for small values of d. Therefore, in our count we have underestimated the
low levels, and overestimated the high levels. The result O(ndof log ndof ) comes from the fact
that the estimated amount of computation at each level is O(ndof ), and the number of levels
is O(log ndof ). As we have seen, the actual amount of computation at each level is decreasing
as we get closer to the root. Hence, we are not surprised to obtain an actual complexity lower
than the estimation. Nevertheless, this does not mean that FMM is an O(ndof ) algorithm, since
we do not know how the code behaves when the number of unknowns ndof increases even
more.

4. PARALLEL IMPLEMENTATION AND PERFORMANCE

4.1. Overview of the parallelization

In order to have access to the wider choice of parallel architectures, we have chosen to use the
message passing paradigm and the MPI implementation. Therefore, we have the possibility
to use both clusters of PC (at INRIA for instance) or supercomputers with distributed or
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Table VII. Example of multipole performance on supercomputers.

Shape Cetaf Sphere

Number of unknowns 2 156 400 11 360 748
Diameter in wavelengths 100� 100�
FMM levels 10 10
Number of processors 32 16

Formulation EFIE+SPAI CFIE
Residual 2:9× 10−2 10−4

Number of iterations 100 49

Memory(RAM) 12 Gb 24:3 Gb
Memory(Disk) 63:8 Gb 132:8 Gb
CPU time 4:5 h 9 h

shared memory (IBM SP3 and SGI Origin 3800 at CINES‡). The distribution of the octree
is made level by level, each of them is being fairly distributed among the processors. When
a given cell C is a�ected to a processor, all the computations required to build the radiation
functions FC and GC are made exclusively on this processor. Each phase of calculation
(symbolized by 12 arrows in Figure 5) is preceded by a phase of communication. Therefore,
a full multipole product on a parallel machine will consist of an alternance of computation
steps and communication steps. This requires a good load balancing at each level of the
octree.

4.2. Performance on supercomputers

In the �rst time, we show in Table VII the performance achieved on an SGI origin 3800. Both
objects are perfectly conducting, illuminated by a plane wave. The solver is still GMRES,
used in conjunction with a parallel SPAI preconditioner in the cetaf case. We can see that
the time and memory requirements remain moderate considering the number of unknowns. In
the next section, we will exhibit convincing results obtained on an even larger structure, that
is why we do not show any graphical results proving the validity of these tests.

4.3. Performance on clusters

Clusters of PC have gained wide acceptance thanks to their increasing performance and low
price. For instance, INRIA has built a cluster composed of 19 nodes (with two pentium III
at 933 MHz, 512 Mb of RAM and 9 Gb of disk each). The nodes are connected through a
fast-ethernet full-duplex switch. Table VIII shows some computations that can be done on this
con�guration. A 1 million unknowns industrial case has been completely treated in 5 h using
only eight nodes (16 processors). Without the FMM, this kind of case would have required
hundreds of processors and several days of computation on supercomputers hundreds of time
more expensive.

‡http:==www.cines.fr
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Table VIII. Example of multipole performance on cluster.

Shape Aircraft Aircraft

Number of unknowns 213 084 1 160 124
Diameter in wavelengths 43� 87�
FMM levels 9 10
Number of processors 8 16

Solver CFIE CFIE
Residual 10−2 10−2

Number of iterations 81 91

Memory (RAM) 262 Mb 3:0 Gb
Memory (Disk) 2:1 Gb 16 Gb
CPU time 1:0 h 4:9 h

Table IX. FMM parallel scalability on SP3.

Matrix–vector product

Proc Time (s) E�ciency (%) % CPU % COMM % I/O

Out of core
1 2884.1 — 67 — 33
4 728.8 99% 72 17 11

In core
8 305.3 118% 73 23 4
16 204.1 88% 65 27 8
32 116.4 77% 59 33 8
48 108.4 55% 58 33 9
64 92.0 49% 55 36 9
80 82.9 43% 50 40 10

4.4. Parallel scalability

In order to establish the performance of our parallelization scheme, we will now take a look
at the CPU time required by one FMM product on a growing number of processors. The
case chosen is a 4 851 900 unknowns cetaf (the choice of a sphere would have given much
better but unrealistic results), running on 1–80 processors of IBM SP3. For each number
of processors, we give the CPU time (in s) for one product, the parallel e�ciency for this
part of the code, and the percentage of this time spent in calculation (CPU), communication
(COMM) and disk access (I=O). (Table IX).
In this computation, the octree’s size is 2:3Gb. Therefore, the code runs in out-of-core mode

on one and four processors, and it runs in-core afterwards. That is why we see an e�ciency
higher than 100% for eight processors. Up to 32 processors, the results are good, with an
e�ciency above 75%. With 48 processors and above, the e�ciency is not as good, but we
must say that this test case is probably too small for such a large number of nodes. We will
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Figure 9. Bistatic RCS for VV polarization.

see in the next section that very high e�ciency can also be achieved on 64 processors with
larger cases.

5. EXTREMELY LARGE COMPUTATIONS

We will conclude this paper with two very large computations that demonstrate the full
potential of our FMM implementation.

5.1. Large sphere RCS

Once again, we use a perfectly conducting sphere. Here, the diameter is 150� and the number
of degrees of freedom is 25.6 millions. We solve the CFIE with a GMRES solver. Eight-one
iterations are needed to reach a �nal residual below 10−5. Each iteration requires only 440 s,
13% of this time is used by parallelism; therefore, the parallel e�ciency is above 85%. The
whole calculation requires 18 h on a 64 processors SP3, including 45 min for calculating the
bistatic RCS in 1800 directions. Figure 9 compares the RCS obtained with the exact result
coming from the Mie series (entire curve on the top, closer view for the angles between 165
and 180 on the bottom). Once again, we observe a very good agreement. With more than
25 million unknowns, this is (as far as we know) the largest computation of this kind ever
reported.
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Figure 10. Cetaf case: de�nition and results.

5.2. Industrial case

We will now present a case in which we have used an SPAI preconditioner in order to
improve the convergence. For that purpose, we have developed a parallel octree-based SPAI
preconditioner. We will use it to compute the radar cross-section of a 13.5 million unknowns
perfectly conducting cetaf (of diameter 250�). On a 64 processor SP3, 12 h are needed the
compute the preconditioner matrix. The preconditioned GMRES only needs 37 iterations to
converge to a �nal residual below 10−2 (which is more than enough to obtain a correct RCS).
Each multipole product requires 250 s, with only 42 s (17%) for the parallelism. Hence, the
parallel e�ciency is above 80%.
Figure 10 (left) presents the description of our testcase: an incoming plane wave comes

from (�=45; �=180), and we look at the far �eld di�racted in the plane (xOz): (�=0:360;
�=180). On the right, we show the radar cross-section obtained. The �rst peak at �=225
corresponds to the shadow zone, the second peak at �=−45 represents the re�ected wave.

6. CONCLUSION

We have exposed the parallel FMM developed at INRIA and integrated in EADS integral
equation software. The FMM is out of core, highly optimized, and very tunable. On work-
stations, we were able to solve industrial problems involving more than 1 million unknowns.
In parallel, we have obtained very good results both on clusters of PC and supercomputers.
Computations with up to 25 million unknowns were treated with success on 64-processors
of IBM SP3. We plan to extend the FMM to more complex physical cases (including wires
and dielectric), to convert post-treatments (such as far and close �elds computations) to a
multipole algorithm, and to develop solvers using all the features of FMM (especially the
adjustable accuracy).
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